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Abstract
The long time behaviour of the survival probability of the initial state and its
dependence on the initial states are considered, for the one-dimensional free
quantum particle. We derive the asymptotic expansion of the time evolution
operator at long times, in terms of the integral operators. This enables us to
obtain the asymptotic formula for the survival probability of the initial state
ψ(x), which is assumed to decrease sufficiently rapidly at large |x|. We then
show that the behaviour of the survival probability at long times is determined
by that of the initial state ψ at zero momentum k = 0. Indeed, it is proved that
the survival probability can exhibit the various power decays such as t−2m−1

for an arbitrary non-negative integer m as t → ∞, corresponding to the initial
states with the condition ψ̂(k) = O(km) as k → 0.

PACS numbers: 03.65.−w, 03.65.Db, 03.65.Nk

1. Introduction

Decaying quantum systems such as an α-decaying nucleus are often described by the survival
probability of the initial state, which is the probability of finding the initial state in the state at
a later time. One of the remarkable properties of the survival probability is its power decay
law at long times. This is a mathematically predicted nature for systems which possess a
continuous energy spectrum bounded from below [1]. It is actually seen in many models (see
e.g. [2–4] and the references therein). On the other hand, there still remains the difficulty
in observing such power decays in real experiments [5–7]. Hence, further theoretical and
experimental investigations of the power decay law are much required.

One of the fundamental and important models that exhibits the power decay law is the
free particle system, from which we can gain many insights into the dynamics of the survival
probability and also the spatial wave packet. Recently, another aspect of the power-law regime
at long times is revealed for the one-dimensional free particle system, in connection with the
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initial states. As we know, the spatial wave packets for this system are expected to decay
like t−1/2 at long times t. We are assured of such a decay for the Gaussian wave packet.
However, it is not necessarily valid for an arbitrary initial state. In fact, if we take a spatial
power-law wave packet as an initial state, the ‘anomalous decay’ of its maximum can occur
with the form t−α/2 (1/2 < α < 1) [8–10]. This is obviously slower than the well-known
t−1/2 decay. Faster decay than t−1/2 is also studied for the initial wave packets which vanish
at zero momentum, in association with the dwell time [11] and the time operator (see [12]
and appendix A). The latter refers to the time evolution of the survival probability. Therefore,
the asymptotic decay form of the wave packet for the free particle system depends on the
initial states in a considerable way. However, it seems that we are still not getting a clear
perspective of this new aspect of the power decay law. Our aim in the present paper is to find
the strict condition of the initial states for various power decays in the one-dimensional free
particle system, and to clarify the underlying mechanism for such decays. In particular, we
restrict ourselves to the survival probability which will show various power decays similar to
the spatial wave packet.

To this end, we introduce a systematic approach which consists of two procedures. We
first derive in section 3 the asymptotic expansion of the time evolution operator exp(−itH0)

as t → ∞, where H0 is the free Hamiltonian for the one-dimensional free particle system. It
is formally written as

exp(−itH0) = π−1
∞∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2G2j (1.1)

where �(z) is the gamma function, and G2j are some integral operators. This kind of
asymptotic expansion has already been developed by Rauch [13], Jensen and Kato [14],
and Murata [15] with detailed analyses (see also a recent comment by Amrein [16]). Their
results concern the time evolution operator for systems with a short-range potential V (x).
The asymptotic expansion (1.1) for the free particle system is not evaluated by the authors
mentioned above, however, it can be achieved without difficulty, following their technique for
the potential system. The survival probability of the initial state ψ is defined by the square
modulus of the survival amplitude of ψ , that is

〈ψ, exp(−itH0)ψ〉.
We see from (1.1) that 〈ψ, exp(−itH0)ψ〉 = O(t−1/2) only if 〈ψ,G0ψ〉 �= 0. In other words,
if the following condition,

〈ψ,G2jψ〉 = 0 j = 0, 1, . . . ,m− 1 (1.2)

holds for some integer m, we can obtain another asymptotic decay form of
〈ψ, exp(−itH0)ψ〉, t−m−1/2 , faster than t−1/2. Thus, our remaining procedure is to interpret
condition (1.2) as the behaviour of the initial state ψ in, e.g., position or momentum space.
This is achieved in section 4, and we will finally obtain a remarkable conclusion: if the initial
state ψ behaves like ψ̂(k) = O(km) at zero momentum k = 0, then

|〈ψ, exp(−itH0)ψ〉|2 = π−1t−2m−1�(m + 1/2)2|〈ψ,G2mψ〉|2 + o(t−2m−1) (1.3)

as t → ∞, where ψ is assumed to decrease sufficiently rapidly at large |x|, but otherwise
arbitrary. Hence, the behaviour of the initial state ψ at zero momentum, i.e. ψ̂(k) = O(km),
completely characterizes the asymptotic decay form of the survival probability ofψ . This fact
is also expected from the results on the decays faster than t−1/2 for the one-dimensional free
particle system [11, 12].

The paper is organized as follows. We first consider in section 2 the asymptotic behaviour
of the free resolvent (H0−z)−1 at small and large energies. This study is necessary for the proof
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of theorem 3.1 in section 3, where the asymptotic expansion (1.1) is derived. The derivation
essentially follows the method used by Jensen and Kato [14]. To derive the asymptotic formula
(1.3) for the survival probability, it is enough to derive that for the survival amplitude. The
latter is accomplished in theorem 4.3 in section 4. Concluding remarks are given in section 5.

2. The free resolvent in one dimension

We here define the free Hamiltonian in one dimension,H0 := P 2, where P is the momentum
operator defined as P := −iDx,Dx is the differential operator on L2(R). Then, the free
resolvent R0(z) := (H0 − z)−1 is explicitly represented as an integral operator on L2(R) [17]

(R0(z)ψ)(x) = − 1

2iz1/2

∫
R

exp(iz1/2|x − y|)ψ(y) dy (2.1)

for all ψ ∈ L2(R), where z belongs to C+ := {z ∈ C|Im z > 0}, and Im z1/2 > 0. The
resolvent R0(z) is analytic in z. We, however, intend to regard it as an operator which maps
L2,s(R) to L2,−s ′ (R) for positive s and s′. Here L2,s (R), defined for an arbitrary real s, is the
weighted L2-space with the norm

‖ψ‖s :=
[∫

R

(1 + x2)s |ψ(x)|2 dx

]1/2

where ψ ∈ L2,s (R) means ‖ψ‖s < ∞. For positive s and s′, the relation L2,s (R) ⊂ L2(R) ⊂
L2,−s ′(R) holds. In addition, we denote by B(s,−s′) the Banach space of the bounded
operators M from L2,s (R) to L2,−s ′ (R), with the norm

‖M‖s,−s ′ := sup
ψ∈L2,s (R),ψ �=0

‖Mψ‖−s ′
‖ψ‖s .

Note that M ∈ B(s,−s′) means the finiteness of its norm ‖M‖s,−s ′ < ∞. The reason for this
kind of preparation for the free resolvent will be clear in the last part of lemma 2.1.

Lemma 2.1. For s, s′ > 1/2, R0(z) belongs to B(s,−s′), and is continuously extended to
C+\{0} where C+ is the closure of C+.

Proof. We have an estimation

‖R0(z)ψ‖2
−s ′ =

∫
R

(1 + x2)−s
′
∣∣∣∣ 1

2iz1/2

∫
R

exp(iz1/2|x − y|)ψ(y) dy

∣∣∣∣2 dx

� ‖ψ‖2
s

|2iz1/2|2
∫

R

(1 + x2)−s
′
dx
∫

R

(1 + y2)−s dy < ∞

for all ψ ∈ L2,s (R) and z ∈ C+. This result clearly holds for z ∈ C+\{0} and the last part of
the statement is also proved. �

We use the same symbol R0(z) for the extension of R0(z) to C+\{0}. The free resolvent
R0(z) is formally expanded around z = 0,

R0(z) =
∞∑
j=0

(iz1/2)j−1Gj (2.2)

whereGj (j = 0, 1, . . .) is an integral operator acting on the suitable vectors ψ ,

(Gjψ)(x) := − 1

2j !

∫
R

|x − y|jψ(y) dy. (2.3)
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Lemma 2.2. The integral operatorGj is a Hilbert–Schmidt operator that belongs to B(s,−s′)
with s, s′ > j + 1/2.

Proof. Note that the statement in the lemma is equivalent to (1 + x2)−s
′/2Gj(1 + y2)−s/2 being

a Hilbert–Schmidt operator on L2(R). The latter is easily seen from the relation∫
R

∫
R

|x − y|2j
(1 + x2)s

′
(1 + y2)s

dx dy � 22j
∫

R

∫
R

|x|2j + |y|2j
(1 + x2)s

′
(1 + y2)s

dx dy < ∞
for every s, s′ > j + 1/2. �

The validity of the formal expansion (2.2) is ensured at small energies, in the following
sense.

Lemma 2.3. Let k = 0, 1, . . . . If R0(z) is approximated by a finite series in (2.2) up to j = k,
the remainder is o(|z|(k−1)/2) as |z| → 0, in the norm of B(s,−s′) with s, s′ > k + 1/2. In the
same sense, (2.2) can be differentiated in z ∈ C+\{0} any number of times for appropriate s
and s′, that is the rth derivative in z of the approximating finite series is equal to (dr/dzr)R0(z)

up to an error of o(|z|(k−1)/2−r ) in the norm of B(s,−s′) with s, s ′ > k + r + 1/2.

Proof. We first consider the case of k = 0. Suppose that r is a non-negative integer,
s, s ′ > r + 1/2, and ψ ∈ L2,s(R). Then it follows that∥∥∥∥drR0(z)

dzr
ψ − dr (iz1/2)−1

dzr
G0ψ

∥∥∥∥2

−s ′

=
∫

R

(1 + x2)−s
′
∣∣∣∣∫

R

dr

dzr

[
1

2iz1/2
(exp(iz1/2|x − y|)− 1)

]
ψ(y) dy

∣∣∣∣2 dx

� ‖ψ‖2
s

4

∫
R

∫
R

(1 + x2)−s
′
(1 + y2)−s

[
A|z|−1−2r | exp(iz1/2|x − y|)− 1|2

+
∑
m,m′

Am,m′ |z|m|x − y|m′
]

dx dy (2.4)

where A and Am,m′ are positive constants, and m and m′ are integers, satisfying −1 − 2r <
m � −1 − r and 0 < m′ � 2r , respectively. When r = 0, there is no contribution from
the summation

∑
m,m′ . By the dominated convergence theorem, we see that (2.4) divided by

|z|−1−2r goes to 0 as z → 0. In the same way, for k = 1, 2, . . . , we have∥∥∥∥∥∥drR0(z)

dzr
ψ −

k∑
j=0

dr (iz1/2)j−1

dzr
Gjψ

∥∥∥∥∥∥
2

−s ′

=
∫

R

(1 + x2)−s
′
∣∣∣∣∫

R

dr

dzr

[
(iz1/2)k−1|x − y|k

2(k − 1)!

×
(∫ 1

0
tk−1 exp(iz1/2|x − y|(1 − t)) dt − 1

k

)]
ψ(y) dy

∣∣∣∣2 dx

� ‖ψ‖2
s

|2(k − 1)!|2
∫

R

∫
R

(1 + x2)−s
′
(1 + y2)−s

[
B|z|k−1−2r |x − y|2k

×
∣∣∣∣∫ 1

0
tk−1 exp(iz1/2|x− y|(1 − t)) dt − 1

k

∣∣∣∣2 +
∑
m,m′

Bm,m′ |z|m|x− y|m′
]

dx dy

(2.5)
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for s, s′ > k + r + 1/2, where B and Bm,m′ are positive constants, and m and m′ are integers,
satisfying k− 1 − 2r < m � k− 1 − r and 2k < m′ � 2(k + r), respectively. Taking the limit
z → 0, one can see that (2.5) divided by |z|k−1−2r goes to 0. This completes the proof of the
lemma. �

On the other hand, we also have the following lemma with respect to the asymptotic
behaviour of R0(z) at large energies.

Lemma 2.4. Let k = 0, 1, . . . and s, s′ > k + 1/2. Then R0(z) is k-times differentiable in
z ∈ C+\{0}, in B(s,−s′), and it behaves like

drR0(z)

dzr
= O(|z|−(r+1)/2) r = 0, 1, . . . , k

as |z| → ∞ in the norm of B(s,−s′).
Proof. Suppose that s, s′ > k + 1/2 and ψ ∈ L2,s (R), we have∥∥∥∥drR0(z)

dzr
ψ

∥∥∥∥2

−s ′
� ‖ψ‖2

s

4

∫
R

dx
1

(1 + x2)s
′

∫
R

dy
1

(1 + y2)s

×
[
D|z|−1−r |x − y|2r +

∑
m,m′

Dm,m′ |z|m|x − y|m′
]
< ∞

where D and Dm,m′ are positive constants, and m and m′ are integers, satisfying −1 − 2r �
m < −1 − r and 0 � m′ < 2r , respectively. Then, the right-hand side is O(|z|−1−r ) as
|z| → ∞. �

3. Asymptotic expansion of the time evolution operator

In order to derive the asymptotic expansion of exp(−itH0) in (1.1), we first define the spectral
density denoted by E′(λ) := (2π i)−1(R0(λ)− R0(λ)) for all λ > 0, where

(R0(λ)ψ)(x) := 1

2iλ1/2

∫
R

dy exp(−iλ1/2|x − y|)ψ(y)

for every ψ ∈ L2,s (R) with s > 1/2. The operator R0(λ) is considered as the limit of
R0(λ + iε) in ε ↑ 0. E′(λ) clearly belongs to B(s,−s′) with s, s ′ > 1/2, and it has the same
properties as R0(λ) described in lemmas 2.1, 2.3 and 2.4. Substituting expansion (2.2) and
the corresponding one of R0(λ) into E′(λ), we have

E′(λ) = π−1
n∑
j=0

(−1)j−1λj−1/2G2j + Fn(λ) (3.1)

where Fn(λ) is the remainder. It should be noted that there are no integer powers in λ. We
next focus our attention on the following formula,

exp(−itH0) = lim
R→∞

lim
r↓0

∫ R

r

E′(λ) e−itλ dλ (3.2)

valid in B(s,−s′) for s, s′ > 1/2. The integration in the above can also be regarded as the
complex integral of (2π i)−1R0(z) e−itz with the contour enclosing the spectrum of H0, i.e.
[0,∞). This formula is shown in appendix B. Then, the asymptotic expansion of exp(−itH0)

at large t is obtained from formula (3.2) together with expansion (3.1). To be precise, we
can show
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Theorem 3.1. Let n = 0, 1, . . . and s, s′ > max{3n + 3/2, 5/2}. Then it follows that

exp(−itH0) = π−1
n∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2G2j + o(t−n−1/2) (3.3)

as t → ∞, in the norm of B(s,−s′).
Note that the asymptotic form of exp(−itH0) at large times is only determined by the

behaviour of the free resolvent R0(z) at small energies. Our proof follows the procedure
proposed by Jensen and Kato [14], and is given in appendix C.

It is interesting to rewrite formula (3.3) by using the ‘generalized’ zero-energy
eigenfunction of H0, i.e. ϕ0(x) := (2π)−1/2. Since G0 = −π〈ϕ0, ·〉ϕ0 from (2.3), we
have an alternative expression of (3.3) as

exp(−itH0) = π1/2(it)−1/2〈ϕ0, ·〉ϕ0 + o(t−1/2) t → ∞. (3.4)

Note that this has the same structure as the asymptotic expansions of the one- and three-
dimensional systems with short-range potential V , which have no zero-energy eigenstate
but zero-energy resonance. The existence of the former implies that there is a zero-energy
eigenfunction belonging to theL2-space, while that of the latter corresponds to the situation in
which there is a functionψ0, that is not inL2(R) but satisfiesG0Vψ0 = 0 for one dimension or(
1 +G(3)

0 V
)
ψ0 = 0 for three dimension. The system with the zero-energy resonance is known

not to be ‘generic’ [13–16], and in such a case ϕ0 in (3.4) is replaced by ψ0. In this sense, the
one-dimensional free particle system is considered to be exceptional. In contrast, the three-
dimensional free particle system seems to be generic, since the t−1/2-term does not appear
in the expansion of exp(−itH0). This is because the free resolvent for the three-dimensional
case has no singularity at the origin, while it appears in (2.1) (see also [18]). To be precise,
the asymptotic expansion of the free resolvent for the three-dimensional case is

R0(z) =
∞∑
j=0

(iz1/2)jG
(3)
j

where G(3)
j is the integral operator with the kernel |x − y|j−1/4πj ! and x,y ∈ R

3 [14].
Therefore the asymptote of exp(−itH0) for the three-dimensional case becomes

exp(−itH0) = π3/2(it)−3/2
〈
ϕ
(3)
0 , ·〉ϕ(3)0 + o(t−3/2) t → ∞ (3.5)

in B(s, s′), with large enough s and s ′. Here ϕ(3)0 (x) := (2π)−3/2 is the zero-energy
eigenfunction of H0. Note that ϕ(3)0 does not yield the t−1/2-term in the expansion series,
unlike in the one-dimensional case.

Formula (3.3) does not provide us with information at each point x. However, it is
useful for calculating the quantities through the norm or the inner product, such as the survival
probability. Suppose s, s′ > j+1/2, σ ∈ R, andM ∈ B(−s′, σ ). Then, sinceGj is considered
as a vector in B(s,−s′), we see that ‖MGjψ‖σ is well defined for allψ ∈ L2,s (R). Therefore,
for s, s′ > max{3n + 3/2, 5/2} and M ∈ B(−s′, σ ), we have from (3.3)∣∣∣∣∣‖M exp(−itH0)ψ‖σ − π−1

∥∥∥∥∥
n∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2MG2jψ

∥∥∥∥∥
σ

∣∣∣∣∣‖ψ‖−1
s ‖M‖−1

−s ′,σ

�
∥∥∥∥∥exp(−itH0)− π−1

n∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2G2j

∥∥∥∥∥
s,−s ′

= o(t−n−1/2) (3.6)
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for all ψ ∈ L2,s (R). For example, we can take (1 + x2)s
′/2E(B) for M with σ = −s′, where

E(B) is the spectral measure of the position operator and B an arbitrary bounded interval
of R, i.e. (E(B)ψ)(x) = ψ(x) (x ∈ B) or 0 (x /∈ B). Then, ‖M exp(−itH0)ψ‖2

−s ′ =
‖E(B) exp(−itH0)ψ‖2 = ∫

B
|ψ(x, t)|2 dx, and the last quantity is called the nonescape

probability, which is the probability of finding the particle in B at a time t. From a similar
argument, we also have∣∣∣∣∣∣〈φ, exp(−itH0)ψ〉 − π−1

n∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2〈φ,G2jψ〉
∣∣∣∣∣∣ ‖φ‖−1

s ‖ψ‖−1
s

�

∥∥∥∥∥∥exp(−itH0)− π−1
n∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2G2j

∥∥∥∥∥∥
s,−s ′

= o(t−n−1/2) (3.7)

for s, s′ > max{3n + 3/2, 5/2} with s � s′ and all φ,ψ ∈ L2,s (R). The asymptotic formula
for the survival amplitude of ψ is the special case of (3.7).

4. Dependence on the initial momentum distribution

In practical situations, it sometimes happens that there are no contributions from some of
the G2j to quantities such as ‖M exp(−itH0)ψ‖σ or 〈φ, exp(−itH0)ψ〉, when they act on
a certain vector ψ . In this section, we confine ourselves to such situations for the survival
amplitude 〈ψ, exp(−itH0)ψ〉.
Lemma 4.1. Let n = 0, 1, . . . . If s > n + 1/2 and ψ ∈ L2,s (R), then xjψ(x) ∈ L1(R), for
all j = 0, 1, . . . , n.

Proof. The statement is obtained straightforwardly:
∫

R
|xjψ(x)| dx = ∫

R
(1 + x2)−(s−j)/2(1 +

x2)(s−j)/2|xjψ(x)| dx �
[ ∫

R
(1 + x2)−(s−j) dx

]1/2[ ∫
R
(1 + x2)s |ψ(x)|2 dx

]1/2
< ∞ for all

j = 0, 1, . . . , n with s > n + 1/2. �

Lemma 4.2. Let m = 1, 2, . . . . If s > max{2(m− 1),m} + 1/2 and ψ ∈ L2,s(R), then the
following three statements are equivalent:

(a) ψ̂(k) = O(km), k → 0.
(b) 〈ψ,G2jψ〉 = 0, j = 0, 1, . . . ,m− 1.
(c)

∫
R
xjψ(x) dx = 0, j = 0, 1, . . . ,m− 1.

In particular, we have G2jψ = 0, j = 0, 1, . . . , (m − 1)/2 for odd m, or G2jψ = 0, j =
0, 1, . . . ,m/2 − 1 for even m.

Proof. Suppose that ψ ∈ L2,s (R) with s > max{2(m − 1),m} + 1/2. Then by lemma 4.1,
we first see that xjψ(x) ∈ L1(R) for j = 0, 1, . . . ,max{2(m − 1),m}. Since e−ikx =∑m−1

j=0 (−ikx)j/j ! + (−ikx)m
∫ 1

0 t
m−1 e−ikx(1−t) dt/(m − 1)!, the fact that (c) implies (a)

immediately follows, by using

|ψ̂(k)| =
∣∣∣∣∣∣ 1√

2π

∫
R

m−1∑
j=0

(−ikx)j

j !
+
(−ikx)m

(m− 1)!

∫ 1

0
tm−1 e−ikx(1−t) dt

ψ(x) dx

∣∣∣∣∣∣
� |k|m√

2π(m− 1)!

∫
R

|xmψ(x)| dx = O(km) k → 0. (4.1)
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To prove the fact that (a) implies (c), let us remember that ψ̂(k) = O(km) (k → 0) means
that for some δ and some finite C � 0, |ψ̂(k)/km| � C for all k satisfying 0 < |k| < δ. Then,
from (4.1),

∫
R
xjψ(x) dx should vanish for all j = 0, 1, . . . ,m. The fact that (c) implies (b)

follows straightforwardly from the identity

−2(2j)!〈ψ,G2jψ〉 =
2j∑
i=0

(−1)2j−i
(

2j

i

)∫
R

x2j−iψ(x) dx
∫

R

yiψ(y) dy (4.2)

where the bar ( ¯ ) denotes the complex conjugate. To prove the fact that (b) implies (c), we
first use the assumption that −2〈ψ,G0ψ〉 = | ∫

R
ψ(x) dx|2 = 0. Then from (4.2) for j = 1

we have | ∫
R
xψ(x) dx|2 = 0, from which the remaining equalities recursively follow. For the

proof of the last part of the lemma, we note that for s, s′ > 2j + 1/2 and ψ ∈ L2,s(R),

G2jψ = 0 ⇔ ‖G2jψ‖−s ′ = 0 ⇔
∫

R

xiψ(x) dx = 0 (i = 0, 1, . . . , 2j).

Hence, if (c) holds, we obtain the equality G2jψ = 0 for all j satisfying 2j � m − 1. This
completes the proof. �

Now we shall derive the asymptotic formula for the survival amplitude by combining
theorem 3.1 with lemma 4.2. The asymptotic formula itself immediately follows from (3.7)
with φ = ψ , under the assumption in theorem 3.1. We also see that max{3n + 3/2, 5/2} �
3n + 3/2 � max{2(m − 1),m} + 1/2 for m � n, and thus the assumption in lemma 4.2 is
included in theorem 3.1. Hence, we finally obtain the following theorem for the survival
amplitude of ψ , which is closely connected to the behaviour of ψ at zero momentum.

Theorem 4.3. Let m,n,m � n be non-negative integers, s > max{3n + 3/2, 5/2}, and
ψ ∈ L2,s (R). Then it follows that

〈ψ, exp(−itH0)ψ〉 = π−1
n∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2〈ψ,G2jψ〉 + o(t−n−1/2). (4.3)

In particular, for some m � 1, if ψ̂(k) = O(km) as k → 0, then 〈ψ,G2jψ〉 = 0 for all
j = 0, 1, . . . ,m− 1, and vice versa.

The asymptotic formula (4.3) can also be written without usingG2j . Let n = 0, 1, . . . . . If
s > n+ 1/2 andψ ∈ L2,s (R), ψ̂(k) is n-times continuously differentiable in k with ψ̂(n)(k) =
(−i)n(2π)−1/2

∫
R
xn e−ikxψ(x) dx. Then, we have from lemma 4.2 and equation (4.2) that

if ψ̂(k) = O(km) as k → 0,

〈ψ,G2mψ〉 = − (−1)m

2(2m)!

(
2m

m

) ∣∣∣∣∫
R

xmψ(x) dx

∣∣∣∣2 = − (−1)mπ

(m!)2
|ψ̂(m)(0)|2. (4.4)

This expression also holds for m = 0 (see (3.4)). Therefore, we obtain from (4.3) the
asymptotic formula for the survival probability,

|〈ψ, exp(−itH0)ψ〉|2 = t−2m−1�(m + 1/2)2

(m!)4
|ψ̂(m)(0)|4 + o(t−2m−1). (4.5)

In theorem 4.3, the assumption that ψ ∈ L2,s(R) with sufficiently large s is technically
required. According to expression (4.5), it is worth reviewing this assumption in the
momentum representation. Let ψ ∈ L2,s (R) (s � 0) and [s] denote the smallest integer
less than or equal to s. Then, by the Plancherel theorem, we have

∞ >

∫
R

(1 + x2)n|ψ(x)|2 dx �
∫

R

|xnψ(x)|2 dx =
∫

Rk

|ψ̂(n)
(k)|2 dk
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for all n = 0, 1, . . . , [s]. It should be noted here that ψ̂(k) is implicitly guaranteed to be
[s]-times differentiable. Hence, as an obvious case, we can find the following subspace,

D := {ψ̂ ∈ C∞(Rk)|ψ̂(n) ∈ L2(Rk), n = 0, 1, . . .} (4.6)

which satisfies D ⊂ {ψ̂ ∈ L2(Rk)|ψ ∈ L2,s (R)} for all s � 0. Then, equations (3.6) and (3.7)
with an arbitrary n can be applied to the wavefunctions belonging to the aboveD. Examples of
such (initial) wavefunctions include kl/(1 + k2m)α and kn exp(−k2), where l,m, n = 0, 1, . . .
and α > 0 with 2mα − l > 1/2.

In order to see some implications of theorem 4.3, let us refer to the following two
examples. We first consider the rapidly decreasing functions, φ̂m(k) = Nmk

m exp(−a0k
2), as

initial wavefunctions, where m = 0, 1, . . . , a0 > 0, and Nm := [�(m + 1/2)/(2a0)
m+1/2]−1/2

are the normalization constants. Then it is obtained through the Laplace transform that

〈φm, exp(−itH0)φm〉 =
∫ ∞

−∞
|φ̂m(k)|2 exp(−itk2) dk

= [1 + it/(2a0)]−(m+1/2) = (it/2a0)
−(m+1/2)[1 +O(t−1)]. (4.7)

On the other hand, we see that the right-hand side of (4.5) exactly corresponds to that of (4.7)
in the leading order. The other example is a special case that ψ̂(n)(0) = 0 for all n = 0, 1, . . . ..
It is worth noting that for such an initial wavefunction, we clearly see from (4.5) that

|〈ψ, exp(−itH0)ψ〉|2 = o(t−2n−1)

for every n � 0; that is the survival probability decays faster than any power of t−1. However,
it must decay slower than any exponential at long times for H0 � 0 [1]. This strange decay
behaviour is also found in a study of the time operator (proposition 3.2 in [12]). The set of such
a special wavefunction is given, e.g., by Ci := {

ψ̂ ∈ C∞
0 (Rk) | ∃k0 > 0; ψ̂(k) = 0, for k ∈

[−k0, k0]
}
. We see from (4.6) that Ci ⊂ D. A wavefunction in Ci has a positive lower-bound

k2
0 on energy. For instance, the following function,

ψ̂(k) =
{

exp
(−1/

[
k2

0 − (k − d)2
])

(|k − d| < k0)

0 (|k − d| � k0)

where d > k0 > 0 surely belongs to Ci.

5. Concluding remarks

We have derived the asymptotic expansion of the time evolution operator for the one-
dimensional free particle system, in terms of the operators which are expansion coefficients
of the free resolvent at small energies. This enables us to obtain the asymptotic formula for
the survival probability of ψ , and also to evaluate, in a systematic way, the condition for the
initial wavefunction ψ which makes the first several terms of the asymptotic formula vanish.
We have found that if ψ̂(k) = O(km) for some non-negative integer m at zero momentum,
the asymptotic power of t−1 for the survival probability must be 2m + 1. In other words,
the information about the initial momentum distribution in the vicinity of zero momentum
is reflected in the asymptotic decay form t−2m−1 at long times. Our results are essentially
due to the choice of the initial wavefunctions ψ in L2,s (R) with sufficiently large s. This
guarantees the existence of the higher derivatives at zero momentum (see the comment after

equation (4.5)). However, there is another wavefunction such that ψ̂
(n)
(0) = 0 up to n = m−1,

while its mth derivative ψ̂
(m)
(0) diverges. Related wavefunctions are considered in [8–11].

For such states, the asymptotic formula (4.5) is not correct. Indeed, the actual asymptotic
decay form of the survival probability includes terms of non-odd powers of t−1. We hope to
address this issue in future.
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Appendix A

Dependence of the survival probability on the initial stateψ for a one-dimensional free particle
system can be seen in the following inequality (theorem 4.1 and section VI in [12]),

|〈ψ, exp(−itH0)ψ〉|2 � 4‖T0ψ‖2‖ψ‖2

t2
t ∈ R (A1)

where T0 is the Aharonov–Bohm time operator [19]. This provides us with an interpretation
of ‖T0ψ‖, or of the time uncertainty calculated from T0. The relevant information herein is
that for any L2-function ψ whose several moments are finite, e.g. ψ ∈ L2,s (R) (s > 3/2), we
have

‖T0ψ‖ < ∞ ⇐⇒ ψ̂(k) = O(k2) k → 0. (A2)

This implies, together with (A1), that condition (A2) at zero momentum imposes on the
survival amplitude 〈ψ, exp(−itH0)ψ〉 a decay faster than t−1, which is obviously faster than
t−1/2 of the usual decay law for the one-dimensional free particle system.

To prove relation (A2), we first define the Aharonov–Bohm time operator T0, which is
mathematically well treated in the scheme of the axiomatic quantum mechanics [12, 20]. We
define this operator as follows: the domain of T0 is

D(T0) :=
{
ψ ∈ L2(R)| lim

k→0
ψ̂(k)/|k|1/2 = 0 and (T̂0ψ)(k) ∈ L2(Rk)

}
(A3)

and its action

(T̂0ψ)(k) = i

4

(
dψ̂(k)/k

dk
+

1

k

dψ̂(k)

dk

)
a.e. k ∈ Rk ψ ∈ D(T0) (A4)

where ψ̂(k) is assumed to be differentiable everywhere except at the origin. For a ψ that
belongs to L2,s(R) (s > 3/2), ψ(x) and xψ(x) are in L1(R) by lemma 4.1. This implies that
ψ̂(k) is differentiable everywhere including the origin. Then, it follows as in (4.1) that for
k → 0

ψ̂(k) = ψ̂(0) + kψ̂ ′(0) +O(k2) ψ̂ ′(k) = ψ̂ ′(0) +O(k). (A5)

Hence

(T̂0ψ)(k) = i

4

(
− ψ̂(0)

k2
+
ψ̂ ′(0)
k

)
+O(1) (A6)

for small k. Furthermore, since ψ ∈ L2,s(R) ⊂ L2,1(R),
∫

R
|xψ(x)|2 dx = ∫

Rk
|ψ̂ ′
(k)|2 dk <

∞. Thus, (T̂0ψ)(k) is assured to be square integrable on (−∞,−δ] ∪ [δ,∞) for an arbitrary
δ > 0.

Now, to prove the fact that ‖T0ψ‖ < ∞ implies ψ̂(k) = O(k2), k → 0 in relation (A2),
let us suppose that (T̂0ψ)(k) ∈ L2(Rk). Then, from the general property of L2-functions,
we see that (T̂0ψ)(k) ∈ L1([−δ, δ]). This contradicts (A6) unless ψ̂(0) = ψ̂ ′(0) = 0.
Thus we have that ψ̂(k) = O(k2). Conversely, if ψ̂(k) = O(k2), it follows from (A5) that
ψ̂(0) = ψ̂ ′(0) = 0. Then, (A6) implies that (T̂0ψ)(k) ∈ L2([−δ, δ]). Hence, (T̂0ψ)(k)

belongs to L2(Rk), and the proof of relation (A2) is completed.
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Appendix B

In this appendix, we derive formula (3.2) which directly relates exp(−itH0) to the spectral
density. Let us remember that the time evolution operator for a one-dimensional free particle
system is explicitly represented as

ψ(x, t) = (exp(−itH0)ψ)(x) = (4π it)−1/2
∫

R

exp(i|x − y|2/4t)ψ(y) dy = O(t−1/2) (B1)

for all ψ ∈ L1(R) ∩ L2(R) and t �= 0 [17]. Note that L2,s (R) ⊂ L1(R) for s > 1/2. Then,
exp(−itH0) is considered as an integral operator belonging to B(s,−s′) for s, s ′ > 1/2.

Let s, s′ > 1/2 and ψ ∈ L2,s (R). We have an equality(∫ R

r

E′(λ) e−itλ dλψ

)
(x) =

∫
R

dy

[∫ R

r

cos(λ1/2|x − y|) e−itλ

2πλ1/2
dλ

]
ψ(y) a.e. x ∈ R

for positive r and R. Then it follows from (B1) that∥∥∥∥∫ R

r

E′(λ) e−itλ dλψ − exp(−itH0)ψ

∥∥∥∥2

−s ′
‖ψ‖−2

s �
∫

R

∫
R

∣∣∣∣∫ R

r

cos(λ1/2|x − y|) e−itλ

2πλ1/2
dλ

− exp(−|x − y|2/4it)

(4π it)1/2

∣∣∣∣2 dx dy

(1 + x2)s
′
(1 + y2)s

. (B2)

We here see that

sup
x∈R,R>0

∣∣∣∣∫ R

0

cos(λ1/2|x|) e−itλ

2πλ1/2
dλ

∣∣∣∣ < ∞. (B3)

To derive this, we have assumed t > 0; however, the following argument can be applied to
negative t,∣∣∣∣∫ R

0

cos(λ1/2|x|) e−itλ

2πλ1/2
dλ

∣∣∣∣ = (2π)−1

∣∣∣∣∣
∫ R1/2

−R1/2

exp(−it (ξ + a)2) dξ

∣∣∣∣∣
= (2π)−1

∣∣∣∣∣
[∫ R1/2+a

0
exp(−itξ2) dξ +

∫ 0

−R1/2+a
exp(−itξ2) dξ

]∣∣∣∣∣
where a = |x|/2t . The last two integrals are estimated, by the complex integrals with the
contour in the fourth quadrant, to be∣∣∣∣∣
∫ |R1/2±a|

0
exp(−itξ2) dξ

∣∣∣∣∣ � π(1 − exp(−t|R1/2 ± a|2))
4t|R1/2 ± a| +

∫ |R1/2±a|

0
exp(−tr2) dr

� π

4t
sup
x>0

1 − exp(−tx2)

x
+

1

2

√
π

t
< ∞.

This leads to (B3). We also see straightforwardly

lim
R→∞

lim
r↓0

∫ R

r

cos(λ1/2|x − y|) e−itλ

2πλ1/2
dλ = exp(−|x − y|2/4it)

(4π it)1/2
. (B4)

Therefore, by the dominated convergence theorem, we have from (B2), (B3) and (B4)

sup
ψ∈L2,s (R),ψ �=0

∥∥∥∥exp(−itH0)ψ −
∫ R

r

E′(λ) e−itλ dλψ

∥∥∥∥2

−s ′
‖ψ‖−2

s → 0

as r ↓ 0 and R → ∞, and we finally obtain formula (3.2).
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Appendix C

In order to prove theorem 3.1, we first summarize the several properties of E′(λ). By
lemma 2.3, we see that for n � 0 the remainderFn(λ) in (3.1) is (n+1)-times differentiable, in
B(s,−s ′) for s, s′ > 2n+(n+1)+1/2 = 3n+3/2, and satisfies that (d/dλ)rFn(λ) = o(λn−r−1/2)

as λ ↓ 0 (r = 0, 1, . . . , n+1). On the other hand, we see from lemma 2.4 that (d/dλ)rE′(λ) =
O(λ−(r+1)/2) as λ → ∞, in B(s,−s′) for s, s′ > (m+1)+1/2 = m+3/2 (r = 0, 1, . . . ,m+1).
In particular, if m � 1, (d/dλ)m+1E′(λ) is integrable on [δ,∞) for an arbitrary δ > 0.

Let us now split the integral in (3.2) into two parts by writing

E′(λ) = φ(λ)E′(λ) + (1 − φ(λ))E′(λ)

where φ ∈ C∞
0 ([0,∞)) and satisfies φ(λ) = 1 in a neighbourhood of λ = 0. Such

a function is realized by f (λ) = 1 − ∫ λ
0 g(x) dx, where g(x) = h(x)

/∫
R
h(x) dx and

h(x) = exp(−1/[1 − (x − d)2]) (|x − d| < 1) or 0 (|x − d| � 1) with d > 1.
From lemma 10.1 in [14] and the discussion as mentioned above, we see that

(1 −φ(λ))E′(λ) has a contribution of o(t−m−1) to exp(−itH0) in B(s,−s′), wherem � 1 and
s, s′ > m + 3/2.

On the other hand, the contribution of φ(λ)E′(λ) to exp(−itH0) gives the main part of
the asymptotic expansion. Then, the coefficient of G2j is given by∫ ∞

0
φ(λ)λj−1/2 e−itλ dλ = ij

dj

dtj

[∫ ∞

0
λ−1/2 e−itλ dλ +

∫ ∞

0
(φ(λ)− 1)λ−1/2 e−itλ dλ

]
= �(j + 1/2)(it)−j−1/2 + ij

dj

dtj

∫ ∞

0
(φ(λ)− 1)λ−1/2 e−itλ dλ. (C1)

Note that since φ(λ) − 1 and all its derivatives vanish in the neighbourhood of λ = 0
and φ ∈ C∞

0 ([0,∞)), the last term in (C1) decays faster than any negative power of t.
Furthermore, we understand, from lemma 10.2 in [14] and the discussion in appendix A, that
if s, s ′ > 3n + 3/2, any contribution of the Fourier transform of the remainder φ(λ)Fn(λ) to
exp(−itH0) is of o(t−n−1/2) in the norm of B(s,−s′). Summarizing the above arguments, we
finally obtain, under the condition s, s′ > max{3n + 3/2, 5/2},∥∥∥∥∥∥exp(−itH0)− π−1

n∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2G2j

∥∥∥∥∥∥
s,−s ′

�
∥∥∥∥exp(−itH0)−

∫ R

r

E′(λ) e−itλ dλ

∥∥∥∥
s,−s ′

+

∥∥∥∥∥∥
∫ R

r

E′(λ) e−itλ dλ

−
n∑
j=0

(−1)j−1�(j + 1/2)(it)−j−1/2G2j

∥∥∥∥∥∥
s,−s ′

→ 0 + o(t−n−1/2)

as r ↓ 0 and R → ∞. This is just the asymptotic expansion of exp(−itH0) in (3.3).

References

[1] Fonda L, Ghirardi G C and Rimini A 1977 Rep. Prog. Phys. 41 587
[2] Nakazato H, Namiki M and Pascazio S 1996 Int. J. Mod. Phys. B 10 247
[3] Garcı́a-Calderón G, Mateos J L and Moshinsky M 1995 Phys. Rev. Lett. 74 337
[4] Muga J G, Delgado V and Snider R F 1995 Phys. Rev. B 52 16381
[5] Greenland P T 1988 Nature 335 298



The power decay of the survival probability at long times 7171

[6] Norman E B, Gazes S B, Crane S G and Bennett D A 1988 Phys. Rev. Lett. 60 2246
[7] Nicolaides C A and Mercouris Th 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1151
[8] Unnikrishnan K 1997 Am. J. Phys. 65 526
[9] Lillo F and Mantegna R N 2000 Phys. Rev. Lett. 84 1061, 4516

[10] Mendes R S and Anteneodo C 2000 Preprint cond-mat/0003366
[11] Damborenea J A, Egusquiza I L and Muga J G 2002 Am. J. Phys. 70 738 (Preprint quant-ph/0109151)
[12] Miyamoto M 2001 J. Math. Phys. 42 1038
[13] Rauch J 1978 Commun. Math. Phys. 61 149
[14] Jensen A and Kato T 1979 Duke Math. J. 46 583
[15] Murata M 1982 J. Funct. Anal. 49 10
[16] Amrein W O 2001 Preprint quant-ph/0104049
[17] Reed M and Simon B 1979 Methods of Modern Mathematical Physics Vol II: Fourier Analysis, Self-Adjointness

(New York: Academic) ch 9 section 7
[18] Muga J G 2002 Time in Quantum Mechanics ed J G Muga, R Sala Mayato and I L Egusquiza (Berlin: Springer)

ch 2 (Preprint quant-ph/0105081)
[19] Aharonov Y and Bohm D 1961 Phys. Rev. 122 1649
[20] Egusquiza I L and Muga J G 1999 Phys. Rev. A 61 012104


